
Parallelizing FFT with a Focus on 
Bandwidth Efficiency

Anuvind Bhat and Saatvik Suryajit Korisepati



● Parallel pre-computation of Twiddle Factors
○ Loop collapse

● Switching to DFT in Recursive FFT at Threshold
● Iterative Algorithmic Modifications
● Bit Reversal allowing Butterfly Networks
● Chunking of Data that fits in L1/L2 Cache
● Matrix Transpose enabling better Spatial Locality
● Exploiting more available parallelism

Main Optimizations

FFT and our Approach

● What is Fast Fourier Transform (FFT)?
● Discrete Fourier Transform
● FFT (Fully Recursive, Recursive with Threshold, and 

Iterative)
● 2D FFT
● Image Compression





● Sequential access within a recursive call
● Needless copying causes poor locality
● High overhead due to recursion at small sizes
● Better scaling and constant factors for DFT



● Recursive Shuffle
○ Sort by reverse of the bits of the index
○ Bit reversal is a bijection and swaps are 

independent of each other
● Chunking (4 elements in cache)

○ 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7
○ 5 reuses data brought in by 1 and 2
○ 1 -> 2 -> 5 -> 3 -> 4 -> 6 -> 7
○ N log(N/C) instead of N log(N)





● Chunking is effective
● Non-chunking still bandwidth bound
● Bit reversal (bit shifting) and pre computation 

(std::polar) are more compute bound

2-Dimensional FFT
● Steps

○ Perform in-place 1D FFT on the rows
○ Transpose the matrix
○ Perform in-place 1D FFT on the rows (which 

were the columns pre-transpose)
○ Transpose the matrix

● Parallel across rows or within row



Original 50% 75%

99.5%98%90%

● 2D FFT on each color obtaining the Fourier 
Coefficients

● Discard smallest x% of coefficients by 
magnitude

● Store remaining coefficients and their indices
● Convert back to matrix by adding zeros for  

missing data
● Perform Inverse FFT on the matrix to obtain 

image

Image Compression


