
Parallelizing FFT with a Focus on
Bandwidth Efficiency

Anuvind Bhat and Saatvik Suryajit Korisepati

Summary 2

Background 2
What is DFT and FFT? 2
Formulating the Fourier transform and the FFT algorithm 2
Challenges in parallelizing FFT 4

Approach 5
DFT 5
Recursive FFT 6
Iterative FFT 7
2D FFT 11

Results 12
Introduction 12
Parallelized DFT 12
Parallelized FFTs 14
Parallelized 2D FFT 17
Miscellaneous Observations 18

Image Compression 19

References 21

Work Distribution 22

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Summary

We have parallelized and optimized one-dimensional (1D) and two-dimensional (2D) versions of
the Fast Fourier Transform (FFT) with a focus on improving its memory bandwidth usage using
OpenMP. For this project, we implemented parallel versions of 1D Discrete Fourier Transform
(DFT), 1D recursive FFT, 1D iterative FFT, and 2D FFT using our iterative 1D FFT; we also
implemented several optimizations for these implementations. Finally, as a means of visualizing
correctness, we applied our 2D FFT implementation to image compression. At 8 threads, our
most performant 1D implementation (iterative) achieved a ~6x speedup, while our 2D
implementation achieved a ~7x speedup. At 64 threads, 1D iterative achieved a ~22x speedup
while 2D achieved a ~40x speedup. Our iterative implementation was much more performant
than our baseline recursive implementation; on a single thread, it was 3.2x faster, and at 64
threads, it was ~260x faster.

Background

What is DFT and FFT?

FFT is an algorithm, with roots in signal processing, for computing the so-called Discrete Fourier
transform (DFT) of a sequence of numbers. In the context of signal processing, FFT and DFT are
used to decompose a signal into sinusoidal curves with different amplitudes and frequencies.
This is known as converting a signal from the time domain to the frequency domain. The naive
approach to computing the DFT takes O(n2) time while FFT computes the result in O(n log (n))
time. Another way of interpreting the DFT is that it evaluates a polynomial whose coefficients
are given by the input at n powers of the nth root of 1 (unity). The latter formulation, as shown
below, allows us to easily derive the FFT algorithm as well as some of the optimizations we
implemented.

Formulating the Fourier transform and the FFT algorithm

As mentioned in the previous section, we will focus on formulating the Fourier transform as a
polynomial evaluation problem. We want to evaluate the following polynomial P(y) at specific
powers of a principal nth root of unity.

By convention, the root we select is . DFT can then be formulated as follows

2

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Each element Xk (Fourier coefficient) of the resultant DFT vector can then be computed as
follows

Note that it’s also possible to invert this transformation to go from the point-value representation
back to the list of polynomial coefficients in a similar manner.

Therefore, to calculate a Fourier coefficient, we have to access all the elements in the input array.
This formulation naturally leads to an O(n2) algorithm where we compute each Fourier
coefficient by iterating through the input vector. Although this is a valid approach, it is not very
efficient and doesn’t scale to large datasets due to its time complexity.

For the purposes of our project, we only consider the case where N is a power of 2. This greatly
simplifies the FFT formulation, but note that it’s still possible to compute FFT for non-powers of
2 elements. The FFT algorithm (specifically Cooley-Tukey) utilizes a divide and conquer
approach to compute the transform. Observe that the computation of Xk can be split into the sum
of 2 terms as follows

This formula can only be used for to since we only compute Ek and Ok for those𝑘 = 0 𝑁
2 − 1

values. But using the fact that and we can extend this to indices
as well. The final recursive formulation is then≥ 𝑁

2

This formulation directly leads to the Cooley-Tukey algorithm.
1. Split the data into 2 parts. One part with elements from the even indices, and the other

with the odd indices.
2. Perform FFT recursively on these 2 parts.
3. Combine the results of the 2 sized FFTs to get the transform of the original input𝑁

2

(using the formulation above).
The data flow and dependencies for this algorithm on an 8 element vector are visualized below.

3

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

This visualization will help us create an iterative, in-place implementation of the FFT algorithm;
we will explain this further in Iterative FFT.

Finally, the 2D FFT algorithm simply performs FFT on each row of the input followed by FFT
on each column of the input (or vice versa). We utilize 2D FFT to perform image compression,
which is elaborated on in the Image Compression section.

Challenges in parallelizing FFT

The quadratic DFT algorithm is compute bound. It has very good spatial locality since it simply
iterates over the input elements repeatedly (once per output). The repeated access of the elements
provides temporal locality as well. Parallelism is also readily available since each output element
can be computed in parallel. However, the time complexity of this algorithm makes it unsuitable
for use on medium to large datasets.

4

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

FFT’s properties are pretty much the opposite. The loglinear time complexity makes it suitable
for essentially any dataset that can fit into RAM. However, there is extremely poor spatial and
temporal locality translating to poor cache performance. With each recursive call, the algorithm
allocates new memory for the even and odd vectors and then populates them. Therefore,
although each recursive call can be parallelized, the usage of memory bandwidth needs to be
greatly improved: a significant challenge.

2D FFT, on the other hand, is relatively easy to parallelize (assuming we have a good 1D
implementation). Parallelism is readily available across rows and columns. One point to keep in
mind is that directly performing 1D FFT on the columns would require accesses with row-length
strides which is terrible for spatial locality; this will need to be remedied for a performant
implementation.

To resolve these challenges and to improve performance, we apply and explore various
optimizations such as iterative formulations, pre-computations, chunking by cache size, matrix
transposes, and others.

Approach

Our implementations of the algorithms made use of OpenMP for parallelization. Our
measurements during testing were predominantly done on the GHC machines. However, we also
used the Bridges 2 supercomputer if tuning parameters was required. Finally, most of our results
were measured on the Bridges 2 supercomputer since it provided far more hardware threads than
the GHC machines; this allowed us to see how our implementations scale across a large range of
thread counts.

DFT

We began our implementation with the O(n2) DFT implementation described in the Background.
We allocated new memory for the result vector since each Fourier coefficient requires all the
inputs; note that this is in contrast to our final iterative FFT implementation which is done
completely in place. Another way of formulating this algorithm is as a matrix-vector product
where the vector is the input vector and the matrix is as below

5

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

The algorithm was easily translated into code as a nested loop with the outer loop iterating over
the output vector and the inner loop iterating over the inner vector to compute the row-vector dot
product. We computed the powers of wN on the fly in the inner loop using std::polar. Doing so
allowed each Fourier coefficient (iteration of outer loop) to be considered as a unit of
parallelization, and we simply parallelized this loop with “omp parallel for”. Additionally, the
scheduling type chosen was static as the computation performed is nearly identical for every
output element, which implies that each unit of parallelism takes roughly the same time to
compute. The structure of the algorithm allowed for extremely good spatial locality as elements
in the original input vector were being accessed (read-only) sequentially, as were the writes to
the output vector. The execution time obtained when running on 8 cores for a data set of 215

elements was 2556 ms.

When revisiting this implementation at a later date, we utilized perf to observe that the calls to
std::polar in the inner loop were a bottleneck. We observed that only N elements of the matrix

actually needed to be computed rather than N2 since . Therefore, we added an
optimization to pre-compute wN

0, wN
2, …, wN

N-1 and store the results in a vector; since each of
these elements can be computed independently using a std::polar call, the pre-computation was
trivially parallelizable. We were essentially trading the cost of a std::polar call for an array access
with this optimization. This change provided a significant performance improvement. The
execution time with the same parameters achieved a result of 1126 ms (a speedup of 2.27x). As
can be seen in the perf reports below, there was a significant reduction in the percentage of CPU
cycles spent in the trigonometric functions (std::polar is implemented using these).

Before Optimization After Optimization

Finally, as we show in the Parallelized DFT section, this implementation scales very well to large
thread counts, despite the poor absolute performance on large datasets.

Recursive FFT

Next, we moved our attention to the Cooley-Tukey algorithm for FFT. We implemented this
algorithm recursively as described in the Background. Our unit of parallelization was each
recursive call, and we parallelized this using OpenMP tasks. However, doing so did not improve
performance. In fact, the algorithm showed a slowdown with an increase in the number of
threads (see Parallelized FFTs). We hypothesized the cause of this issue to be the memory access
patterns, which exhibited little locality. At each recursive call, the algorithm allocates new

6

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

vectors for the even and odd elements. This copying of data leads to poor temporal locality.
Moreover, allocations themselves aren’t cheap. Additionally, creating a new task at high
recursion depths made little sense since the overhead of task scheduling likely overwhelms any
gains in increased parallelism.

In order to alleviate these issues, we added an optimization that would switch the algorithm to
use our DFT algorithm (in serial mode) below a certain size of the input array. This was
motivated by the extremely good scaling exhibited by DFT and its access patterns. After tuning
the threshold, we found that the best size was 16 on the GHC machines (graph below) and 64 on
Bridges 2. This change simultaneously resolved the three issues we mentioned earlier.
Performance was slightly worse on a single thread (likely due to the quadratic behavior
outweighing other factors), but it was much better at higher thread counts (see Parallelized
FFTs). However, since this improvement is only applicable below a certain threshold, the
speedup isn’t great–especially at high thread counts (see Parallelized FFTs).

It’s worth noting that simply not creating more tasks at high recursion depths (using the final
keyword in OpenMP) did not scale nearly as well, which further supports the theory that the poor
locality was also a key issue.

Iterative FFT

Our next implementation started as an iterative, in-place implementation of the Cooley-Tukey
algorithm. This implementation can be “derived” and parallelized by visualizing the operations
performed by the recursive implementation. The illustration of this is below, and we will
elaborate on it and refer to it (as the butterfly diagram) in the following paragraphs. Note also
that we refer to the colored boxes as “sections”.

7

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

The recursive implementation can be broadly broken down into two parts–a shuffling step where
it recursively partitions the even and odd elements, and a bottom-up “combining” step where the
now reordered elements are combined using the recursive formulation in Background.

In the first shuffle step, notice how partitioning the even and odd elements is identical to a stable
sort by the least significant bit (LSB) of the index. Similarly, the second shuffle step breaks ties
with a stable sort by the 2nd most LSB of the original index. Finally, if our sort were unstable,
we would need to break ties once again by sorting by the most significant bit (MSB) of the
original index. This repeated sorting is identical to sorting the original vector by the reverse of

the bits of the original index. Additionally, since the bit reversal function
is a bijection, the element at index i in the original vector will be at index bitrev(i) in the final
shuffled/sorted vector. Lastly, the elements at index i and bitrev(i) swap places since
bitrev(bitrev(i)) = i.

8

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

These observations lead to a highly parallelizable algorithm for the shuffle step. Where a is the
input vector, simply swap a[i] and a[bitrev(i)]. Each swap is independent of every other swap
operation which allows us to parallelize across all of them.

Our remaining optimizations were in the bottom-up step. This can be iteratively implemented as
a triple nested loop. The outer loop iterates through the lengths of the combine steps (2, 4, and 8
in our butterfly diagram). The middle loop iterates through every section of a given combine step
(sections 1-4 for the first step, sections 5, 6 for the second, and section 7 for the third in the
diagram). Finally, the inner loop simply iterates through the elements in every chunk. The outer
loop must be done sequentially, so in our initial implementation of the combine step, we
parallelized the middle loop. This approach to parallelization essentially exploits the same
parallelism used by the recursive implementation, where each recursive call is a unit of
parallelization.

Due to the iterative, in-place nature of this implementation, it was already more performant than
our optimized recursive implementation. However, more optimizations could be applied to this
version. Similar to the precomputation optimization mentioned in DFT, each section in a
combine step uses the same roots of unity. A 2-point FFT (section 1) requires w 2

0, a 4-point FFT
(sections 1, 2, 5 together) requires w4

0, w4
1 and the roots required by a 2-point FFT, and so on. In

general, an N-point FFT requires the following roots

This can be implemented as a nested loop where the outer loop iterates over the subscripts and
the inner loop iterates over the superscripts/exponents. Precomputation greatly improved
performance; on a single thread, we saw a 2.2x improvement. However, we noticed that this step
quickly became a serial bottleneck, with speedup on 4 and 8 threads being nearly identical with
this optimization. OpenMP doesn’t allow us to directly parallelize the outer loop due to the
non-standard loop increment of doubling the loop variable. Parallelizing just the inner loop
actually leads to a slowdown: likely due to false sharing. Moreover, even if we were able to
parallelize the outer loop, it wouldn’t be performant due to the uneven workload and limited
number of total iterations. The computation of every element in the precomputation vector is
independent of every other element, so we would ideally be exploiting parallelism across all the
elements. To achieve this, we manually collapsed the nested loop as follows

Before After

9

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Now, the j-loop is trivially parallelizable.

Our next optimization improved the access patterns of the bottom-up step by leveraging data
reuse and improving temporal locality. This optimization applies to both sequential and parallel
execution, so we will describe it in terms of sequential execution for simplicity. Consider the
butterfly diagram above and a machine where 4 elements fit in the L1/L2 cache. The algorithm
executes the sections in the order 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7. Executing sections 1 and 2
would bring in the memory corresponding to the first half of the array into the cache. Notice that
section 5 accesses this same chunk of memory. However, by the time we execute section 5, the
first half of the array is no longer in the cache since sections 3 and 4 would have replaced the
cache with the second half of the array. The same problem occurs for section 6. If we reorder the
execution of sections to 1 -> 2 -> 5 -> 3 -> 4 -> 6 -> 7, sections 5 and 6 will operate on data that
is already present in the cache and won’t need to go out to main memory. With this observation,
we can split the bottom-up step into 2 parts. A “chunking” step where we sequentially execute
sections that operate on data that fits in the cache (sections 1, 2, 5 form a chunk and so do 3, 4, 6)
followed by a “non-chunking” step where we execute any remaining combine steps that operate
on data too large to fit in the cache (section 7 in our example).

The bottom-up step previously required transferring N log2 N elements from memory (log2 N
combine steps). With this optimization, the combine steps that fit in the cache only require
transferring N elements in total, and there are log2 C such steps where C is the number of
elements that fit in the cache. The total number of element transfers with this optimization is then
N log2 N - N log2 C + N = N (log2 + 1). We show in Parallelized FFTs that the “chunking” step𝑁

𝐶

scales significantly better than the “non-chunking” step. This optimization is parameterized by
the number of iterations in a chunk. The parameter should roughly correspond to how many
std::complex<double> elements fit in the L1/L2 cache. Since each complex is 16 bytes, our
back-of-the-napkin calculations yielded around 215. Empirical measurements matched this result
as shown below.

10

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Finally, we noticed that we weren’t exploiting all the parallelism that was available in the
bottom-up step. While we parallelized across sections (like in the recursive implementation), we
weren’t parallelizing within a section. This would mainly be an issue at the later combine steps.
For example, on a 2-thread machine, section 7 of the butterfly diagram would be executed by a
single thread which is a bottleneck. We were able to exploit the parallelism in these steps as well
by collapsing the middle and inner loops of our implementation as follows (note that this can
also be done using the “collapse” OpenMP keyword with slightly worse performance)

Before After

The final algorithm can be split into the following components

1. Bit reversed sort
2. Precomputation of roots
3. Chunking: Bottom-up steps that fit in the cache
4. Non-chunking: Bottom-up steps that don’t fit in the cache

2D FFT

Our implementation for this was relatively simple as we were able to use our iterative FFT
implementation as a subroutine. The main challenge was the strided access when performing 1D
FFTs on the columns (see Background for details). We were able to mitigate this using matrix
transposes. The algorithm looked as follows

1. Perform in-place 1D FFT on the rows
2. Transpose the matrix
3. Perform in-place 1D FFT on the rows (which were the columns pre-transpose)
4. Transpose the matrix

The transpose was done parallelly and in-place using a nested loop. Parallelizing just the outer
loop wasn’t ideal due to the “triangular” work distribution of the loop iterations. We were able to
parallelize both loops using the “collapse(n)” OpenMP keyword, which indicates that parallelism
is available in the subsequent n nested loops starting from the outermost (collapse(1) being the
default).

We were then left with a choice of either exploiting parallelism across rows and columns or
within rows and columns. In other words, we could either parallelly compute several 1D FFTs
(using our 1D FFT implementation in serial mode), or we could parallelly compute the 1D FFT
but only one at a time. The latter would be better if loading the rows into memory is the
bottleneck since parallelizing across rows wouldn’t help in that case, while the former would be

11

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

better otherwise since it exploits better parallelism. We found that the former scaled significantly
better than the latter, and we explain this further in Parallelized 2D FFT.

Results

Introduction

We believe that we were successful in achieving our goals. Not only were we able to effectively
parallelize the Fourier transforms (DFT, 1D FFT, and 2D FFT), but we were also able to achieve
good speedup with optimizations and mitigating bandwidth bottlenecks. Additionally, we were
able to visualize the correctness of our implementations with an image compression tool. We
note that our most performant 1D FFT algorithm was our optimized, iterative version as we had
expected at the start of the project.

For our project, we measure our performance in terms of execution time as well as speedup.
Execution time allowed us to compare performance between our implementations, while speedup
allowed us to see how our implementations scale. It is worth noting here that we didn’t sacrifice
absolute performance in exchange for speedup; for example, eliminating precomputation would
make our iterative FFT implementation more compute bound and scale better, but its absolute
performance would still be worse.

To test our 1D implementations, we predominantly used 5 randomly generated datasets with 210,
212, 215, 220, and 225 elements. 215 was the limit beyond which the quadratic implementation
became infeasible to use. Therefore, we decided to reserve the larger datasets (220, 225) for the
FFT implementations. For our 2D implementation, we used randomly generated datasets with 210

210, 2 211, 2 212, 2 213, and 2 214 elements.× 11 × 12 × 13 × 14 ×

Parallelized DFT

12

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

From the above two charts, we can observe that the DFT implementation scales extremely well
(linear up to 32 and nearly linear up to 64). However, its absolute performance relative to the
FFT implementations is extremely poor. This poor performance can be explained by the
quadratic time complexity of this implementation. The good scaling can be explained by the
access patterns of the algorithm–specifically, the good spatial and temporal locality. By accessing
consecutive elements, the majority of the reads will be cache hits. Additionally, the dataset size
also likely played a role since 215 elements can fit in the higher level caches of the Bridges 2
nodes at least.

However, we notice that there is a decrease in speedup and performance when increasing the
number of threads from 64 to 128; this is a recurring theme in almost all our measurements. We
suspect that this is because the Bridges 2 supercomputer has a 2 CPU architecture (2 x 64 cores)
with an interconnect connecting the CPUs. At 128 threads, we are significantly utilizing the
interconnect between the 2 CPUs and this data movement can become a bottleneck that isn’t as
prevalent at lower thread counts. Partial utilization of the interconnect at 64 threads can also
explain the lack of linear speedup at the thread count. We believe this is the case as we observed
that not all of the 64 threads were scheduled on a single CPU. We didn’t observe this behavior on
the GHC machines.

13

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Parallelized FFTs

The above two graphs show the relative performance of our 1D FFT implementations. Clearly,
the naive parallelization of the recursive implementation is terrible. Not only is it slower than the
other implementations, but it also has terrible scaling (in fact it slows down in some cases when
the number of threads is increased). The poor absolute performance is expected as it has bad
locality. As explained in Recursive FFT, this implementation partitions an array into 2 newly
allocated arrays; this copying back and forth between arrays causes extremely poor locality.
Some of the poor scaling can be attributed to the fixed costs associated with creating tasks and
the synchronization overhead that OpenMP would introduce at higher thread counts due to
concurrent task retrieval. Another possible factor is that the recursive calls for small arrays are
assigned to different threads; if these arrays are laid out closely in memory (due to allocator

14

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

behavior), there is the possibility of false sharing between threads as well. This can help explain
the slowdown we get when increasing thread count.

We also see that switching to the quadratic DFT implementation at a threshold of 64 performs
better in terms of overall execution time as well as speedup compared to the fully recursive
implementation. As we explained in Recursive FFT, this is due to a combination of not creating
new tasks at small array sizes and the better access patterns of the DFT implementation. With
this optimization, we at least get a speedup with an increase in threads unlike our initial
implementation.

Lastly, the iterative FFT implementation has the best performance across all the 1D
implementations in terms of absolute performance as well as speedup. There are several factors
that explain this observation. One of which is the use of static scheduling rather than dynamic
tasks unlike the recursive implementation. We explain all the optimizations in this
implementation in Iterative FFT (with measurements). The use of chunking reduces the amount
of data that needs to be transferred from RAM due to improved temporal locality. We can verify
this benefit empirically in the graph below, which shows that as we decrease or increase the
chunk size from its optimum, we observe an increase in the percentage of cache misses (decrease
in performance).

It is important to note that the speedup achieved for iterative FFT is not linear relative to the
number of threads. At lower thread counts (1, 2, 4, 8), the speedup is almost linear. However, at
higher thread counts we see that this is not the case. We can attribute most of this due to poor
speedup in the non-chunking section of our algorithm as we show below. This section is the most
bandwidth bound and as we increase the number of threads, the bandwidth between RAM and
the CPU stays constant while the amount of compute available increases. We discuss this in
further detail below. However, as we noted in Introduction, speedup alone isn’t the best metric as
it would have been relatively easy to sacrifice absolute performance in exchange for speedup by

15

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

eliminating precomputation, for example, and having threads do repeated work. This was not our
goal, as we were aiming to maximize absolute performance, and this is reflected by the fact that
our iterative implementation, at 64 threads, is 260x faster than our baseline recursive
implementation and 11.2x faster than our optimized recursive implementation.

The iterative FFT algorithm can be split into four components as described in Iterative FFT: bit
reversal, pre-computation, chunking, and non-chunking. The above graph shows the speedup of
each of these components. As can be observed, the non-chunking component performs the worst.
This is expected as this component performs the FFT calculation across a set of elements that do
not fit in the cache causing this to be the most bandwidth bound. On the other hand, this also
illustrates the effectiveness of the chunking optimization as this component has relatively good
speedup. Although at high thread counts, it seems to exhaust the bandwidth as well.

The bit reversal and precomputation components scale the best. This is expected since they both
perform computationally expensive bit shifting and std::polar calls respectively, which makes
them compute bound. However, although they are maximally parallelized, they begin to be
limited by available bandwidth at high thread counts.

Lastly, the increase in execution time and decrease in speedup when increasing the number of
threads from 64 to 128 across the 1D FFT implementations can be attributed to the CPU
architecture of the Bridges 2 supercomputer as we observed in Parallelized DFT as well.

Below, we have provided more granular graphs of just our iterative implementation.

16

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Parallelized 2D FFT

17

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

As noted in 2D FFT, we had a choice of either parallelizing across rows or within rows for our
implementation. We found that the former approach was better than the latter at least for our
dataset sizes where the rows are relatively small (since the entire matrix still needs to fit in
memory). All our datasets had rows small enough to fit in the L1d cache of GHC machines (256
KB). Some datasets had rows that fit in the L1d cache of Bridges 2 nodes (32 KB), while all fit
in the L2 cache (512 KB) of these machines. Due to this, each 1D FFT was compute bound since
it didn’t repeatedly need to go to main memory regardless of how it was accessing the data since
the rows didn’t need to be evicted.

Our results reflect this observation, and we see that we attain nearly linear speedup up to 64
threads (40x speedup on 64 threads). We suspect the plateau in performance at 128 threads is due
to increased use of the interconnect between the 2 chips on the Bridges 2 nodes as observed in
Parallelized DFT.

Miscellaneous Observations

We note that smaller data sets exhibit poor performance as execution time is dominated by
overheads in our implementations. For example, when using a data set of size 2 , we observe10

that increasing the number of threads results in a slowdown and decrease in execution time.
Furthermore, when considering our iterative FFT implementation, the chunking optimization is
irrelevant as a small dataset may fit entirely in the cache, and we end up not exploiting any
parallelism. Lastly, fixed costs such as thread creation and context switches may dominate
execution time for small datasets. The graph below shows the performance of the 1D
implementations when running on a small dataset to support the observations made. In this
instance, it is expected for DFT to have the best scaling due to the extremely low overhead.

18

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Lastly, considering that our target application of image compression is usually performed on
CPUs, we believe that our choice of a CPU-focused implementation, as well as our testing on the
GHC and Bridges 2 machines, were accurate and reflective of the real-world applications of this
algorithm. However, it is worth noting that FFT can be performed on GPUs as well; in fact,
CUDA provides the cuFFT library for this purpose.

Image Compression

We can apply FFT to an image by treating each color channel in an image as a 2D matrix of
elements. 2D FFT can then be applied to this matrix to yield the frequencies corresponding to
each color channel. FFT, as an algorithm for image compression, relies on the fact that most of
the information in a real-world image is present in a few low frequencies while little information
is carried in the higher frequencies. To (lossily) compress an image, we can discard some
percentage of the Fourier coefficients with the lowest magnitude and only store the remaining
coefficients and their respective indices. To reconstruct the image, we simply recreate the Fourier
coefficient matrix (filling in 0s for the ones that were discarded) and apply the inverse Fourier
transform.

Below we have included an image (Mona Lisa) that we have compressed at 5 different levels
(50%, 75%, 90%, 98%, and 99.5%). The compression was done using our parallel 2D FFT
implementation. The accurate results showcase the correctness of our implementations as well as
a real-life, intriguing use case of FFT.

19

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Compression ratios in row-major order: 0% (Original), 50%, 75%, 90%, 98%, 99.5%

20

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

References

Akin, B., Franchetti, F., & Hoe, J. C. (2015). FFTs with Near-Optimal Memory Access Through

Block Data Layouts: Algorithm, Architecture and Design Automation. Journal of Signal

Processing Systems, 85(1), 67–82. https://doi.org/10.1007/s11265-015-1018-0

Bader, M. (2018). Algorithms of Scientific Computing Fast Fourier Transform (FFT).

https://www5.in.tum.de/lehre/vorlesungen/asc/ss15/fft.pdf

Brunton, S. (2020a). Image Compression and the FFT (Examples in Python). Youtube.

https://www.youtube.com/watch?v=uB3v6n8t2dQ

Brunton, S. (2020b). The Discrete Fourier Transform (DFT). Youtube.

https://www.youtube.com/watch?v=nl9TZanwbBk

Brunton, S. (2020c). The Fast Fourier Transform Algorithm. Youtube.

https://www.youtube.com/watch?v=toj_IoCQE-4

Popovici, D. T., Low, T. M., & Franchetti, F. (2018). Large Bandwidth-Efficient FFTs on

Multicore and Multi-socket Systems. 2018 IEEE International Parallel and Distributed

Processing Symposium (IPDPS). https://doi.org/10.1109/ipdps.2018.00048

Wikipedia Contributors. (2019a, January 8). Discrete Fourier transform. Wikipedia; Wikimedia

Foundation. https://en.wikipedia.org/wiki/Discrete_Fourier_transform

Wikipedia Contributors. (2019b, September 17). Cooley–Tukey FFT algorithm. Wikipedia;

Wikimedia Foundation.

https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm

Wikipedia Contributors. (2022, October 18). DFT matrix. Wikipedia; Wikimedia Foundation.

https://en.wikipedia.org/wiki/DFT_matrix

21

Anuvind Bhat (anuvindb) | Saatvik Suryajit Korisepati (skorisep)

Work Distribution

Credit distribution: 50%-50%

● DFT: Saatvik (precomputation optimization Anuvind)
● Recursive FFT: Saatvik (initial parallelization Anuvind)
● Iterative FFT: Anuvind
● 2D FFT: Anuvind
● Image compression

○ BMP compression: Saatvik
○ PPM compression: Anuvind

● Measurements and graphs: Saatvik
● Writeup: Both

22

